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Abstract — Periodic heat transfer in a convecting fin with temperature dependent thermal conductivity and
coordinate dependent heat transfer coefficient, is analyzed using a perturbation analysis. The zero-order
problem, which corresponds to steady-state fin behaviour, is solved by quasilinearization. A method of
complex combination is used, in conjunction with a noniterative numerical scheme, to solve the first-order
and the second-order problems. The nonlinear nature of the problem gives rise to a nonoscillatory
component in the second-order term, which causes a net change in the mean values of temperature and heat
transfer rate. The direction of change depends on the thermal conductivity parameter a. For « > 0, the mean
temperature is increased, while the mean heat transfer rate is decreased. For « < 0, the effect is opposite.
Detailed results showing the effects of various parameters on temperature distribution, heat transfer rate and
time-averaging fin efficiency are presented and discussed.

NOMENCLATURE

A, constant defined by equation (35);
b, fin thickness;
B, dimensionless frequency, pcwL?/k,;

c, specific heat;

f(X), function of X defining coordinate depen-
dence of h;

h, heat transfer coefficient;

hy, heat transfer coefficient at the fin base;

k, thermal conductivity;

ko thermal conductivity at environment
temperature ;

L, fin length;

N,  fin parameter, /(2hy,/k,b)L;

q, heat transfer rate;

Q, dimensionless heat transfer rate,
qL/kub(Tbm - Ta);

t, time;

T, temperature;

Ty, fin base temperature;

T,  environment temperature;

Tym» mean fin base temperature;

X, axial distance;

X, dimensionless axial distance, x/L.

Greek symbols

& dimensionless amplitude of base tempera-
ture, equation (1);

a, thermal conductivity parameter, f
(Tbm - Ta);

B, slope of dimensionless thermal
conductivity—temperature line;

P, density ;

7, time-average fin efficiency over a cycle;

0, dimensionless temperature,
(T_ Ta)/(Tbm - Tn);

0o, zero-order approximation ;

6,, first-order approximation;

0,, second-order approximation;

02,  nonoscillatory component of 6, ;

, complex function of X ;

¢, real part of ¢;

¢,  imaginary part of ¢ ;

v, complex function of X ;

¥y, real part of y/;

¥,  imaginary part of Y;

T, dimensionless time, k,t/pcL?;
w, frequency of base temperature oscillation.
INTRODUCTION

ONE AREA of current interest in fin studies is the
prediction of fin performance under periodic thermal
conditions. Such conditions are often encountered in
applications such as solar collectors, electronic com-
ponents, internal combustion engines, cutting tools
etc. A recent paper of ours [1], and the references cited
therein, give a fairly complete view of the work done so
far. As such, no further review of the literature is
attempted here.

The existing studies consider convecting, radiating
and convecting—radiating fins with periodic variations
of either base temperature or environment tempeia-
ture or base heat flux or fluid temperature at the
convectively cooled fin base. However, none of them
takes into account the effect of variable thermal
parameters which is always present in realistic situ-
ations. For example, in a convecting fin, the con-
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vective heat transfer coefficient varies considerably
from the base to the tip [2]. Similarly, if large
temperature differences exist, the dependence of fin
thermal conductivity on temperature can be signi-
ficant. It would seem that the study of periodic heat
transfer in fins with variable thermal parameters is in
order. The present paper covers this area.

To explore the effects of variable thermal para-
meters, we will consider a convecting fin (the effect of
radiation, if any, is ignored) of uniform thickness with
coordinate dependent heat transfer coefficient and
temperature dependent thermal conductivity. The
base temperature will be assumed to oscillate around a
mean value. The heat transfer coefficient is allowed to
vary along the fin length in an arbitrary manner. Its
exact specification depends on the cooling process and
the available experimental information. However, the
thermal conductivity is assumed to have linear de-
pendence on temperature. Such variations have been
used for many years in steady fin problems, the most
recent example being presented by Razelos and Imre
[2].

A three-term perturbation analysis will be carried
out in terms of the parameter ¢, which represents the
dimensionless amplitude of the base temperature
oscillation. The zero-order problem, which is non-
linear as a result of temperature dependent thermal
conductivity, corresponds to the steady-state be-
haviour. The first and the second order problems
constitute two linear partial differential equations.
With the use of method of complex combination, each
is reduced to two, coupled linear boundary value
problems which are finally integrated numerically by a
noniterative procedure. The analysis highlights some
interesting features associated with the nonlinear
nature of the problem which otherwise remain obscure
if a fully numerical approach is adopted. A second
advantage of the procedure is that the computation is
indeed very fast. A CPU time of 20s was needed on
Amdahl 470 V/7 system to compute all the data, only
part of which appear in the present paper. Despite the
retention of only three terms of the perturbation
expansion, the solution is accurate up to ¢ = 0.4, a limit
that 1s not likely to exceed in practice.

ANALYSIS

Formulation

For simplicity, we consider a straight fin of uniform
thickness b and length L and assume the base tempera-
ture T, to oscillate around a mean value T,, with
frequency w according to

Ty — Tpm = (T — Tylecoswt &< 1. 8]

The fin tip is taken to be adiabatic. On both lateral
faces, the fin loses heat to an environment at tempera-
ture T, with heat transfer coefficient 4, which is taken
as a function of axial distance x. The thermal con-
ductivity k of the fin is assumed to vary linearly with
temperature in accordance with usual practice, that is
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k=k[1+ B(T—T,] )

Based on one-dimensional conduction, the fin equa-
tions in dimensionless form appear as

¢

- R
X:|—N f(X)8 (3)

é ot
oo

X=0,0=1+¢cosft; X=1 —
C

=0 @

where the symbols are as defined in the Nomenclature.

Perturbation solution

Since ¢ would in general remain below unity, we
assume a regular perturbation expansion for 0 in
powers of ¢ as

0(X,7) = 0,(X) + e8,(X,T) + 20,(X, 1)+ - --. (5)

Substituting (5) into equations (3) and (4) and equating
the coefficients of like powers of ¢ on both sides of
equations (3) and (4), one gets the following:

O (1 + afo)0f + a0 — N2f(X)0p =0  (6)
X=00,=1; X=1,0,=0 (7

2 20
ny a{(1 + aeo)‘gi‘ + a%(il]

~

CNrxe, = g
cT

o0
X=1-2=0 (9

X=0 0 = ;
| = cos fit X

¢ a0 o
=y ﬁ[“ + a00)5~§ + ab, a—xi + a@bﬂz]

00
~ N2f(X)0, = 2 (10)

cT

06,

X=0,0,=0; = =0 11
=0 X =1 5 (11

where the primes in equations (6)-(10) and all sub-
sequent equations to follow, denote total differen-
tiation with respect to X. Higher-order terms can be
written similarly ; however, the three-term expansion
would be found sufficiently accurate up to ¢ = 0.4. This
limit is not likely to exceed in practical situations. In
fact, in previous studies [3, 4], the maximum value
assigned to ¢ was 0.2.

The zero-order problem, described by equations (6)
and (7), corresponds to the steady-state behaviour.
Since no analytical solution is available, we shall solve
it using quasilinearization in conjunction with the
method of superposition [5].

To solve equations (8) and (9) we use the method of
complex combination and assume a solution of the
form

0,(X,7) = R[$(X)exp(iBr)] (12)

where the operator R represents the real part of the
quantity in square brackets. With the use of (12) in
equations (8) and (9), the governing equation for ¢
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becomes
(1 4+ ab,)9" + 20050 + [0 ~ N2 f(X) ~ iB} ¢ = 0
(13

X=0,¢=1; X=1,¢ =0. (14)

By splitting ¢ into real and imaginary parts ie.

¢ =10, +ip, (15)
equations for ¢, and ¢, now constitute two, coupled
linear boundary value problems as follows:

(1 + afy)¢7 + 2ab50)
+ [«85 — N*f(X)]¢, + B, =0 (16)
(1 + afly)d3 + 200565
+ [06; — N2 f(X)]d, — B, =0 (17)
X=0¢,=1¢,=0; X=1,¢)=0¢3=0.
(18)

Being linear, equations (16)-(18) can be solved non-
iteratively by the method of superposition as detailed
in [5].

Coming to the solution of equations (10) and (11),it
is noted that one of the terms has 6,(06,/6X) as-
sociated with it. Using equation (12) it can be shown,
after some manipulation, that

a6 A
0155 = 19181 + 6262) + R[(z1 + iz,)e™]
(19)
where
2y = ‘Zl(d)l ¢’l - ¢2¢’2)’ (20)

z; = 3($1 92 + d201).

Equation (19) suggests that the solution for 8, must be
written as the sum of a nonoscillatory component 8,
and an oscillatory component, in the form

0, = 8,, + R[Y(X)e?5] (21)

Using equation (21} in equations (10) and (11) leads to
the following system of equations for 8, and ¥

(1 + 080)05, + 226,65, + 28505,
+4u(d1 87 + 67 + 6205 + 67) — N*f(X)b;,

=0 (22)
X=0,0,=0;, X=1,0,=0 23)

(1 + abg)y¥" + 200" + alz; + iz}
+ [0 — N2 f(X)— i2B]y =0 (24)
X=0 y=0, X=1Ly' =0 (25)

where

2y = 4(@1 91 + 01 — 6293 — ¢7) (26)
7y = 3(¢1 9% + 20162 + 2 07). 27

Once again splitting ¢ into real and imaginary parts
ie.

Y=y +iY, (28)
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we obtain ‘equations for ¥, and y, as follows:
(1 + abo)yy + 2005 + azy ‘

+ [ ~ N2f(X)]¥1 + 2By, =0 (29)
(1 + abBo)ys + 2a85yy + az)
N f(X)]y, — 2By, =0 (30)
X=0,y,=¢,=0; X=1 y)=y,=0.01

As before, equations (22) and (23) and (29)-(31) are
solved noniteratively with the aid of method of super-
position. It should be emphasized that except for the
solution of 6, all other solutions are carried out
noniteratively.

+ [af —

RESULTS AND DISCUSSION

Temperature distribution
The temperature distribution in terms of quantities
determined numerically can be written as

8 =0, + 26, + (¢, cos Bt — ¢, sin Br)

+ £2(4, cos 2Bt — W, sin 2Bt) + O(¢%). (32)

Equation (32) shows that the nonoscillatory com-
ponent 8, associated with the second-order term,
causes a net change in the mean temperature, which in
the absence of oscillation is simply 6,. For all para-
metric values of N and B used here, 8, at all axial
locations was always positive for « > 0, and negative
for o« < 0. This shows that if the thermal conductivity
of the fin material increases with temperature (a > 0),
it causes the mean temperature to increase. On the
other hand, if the thermal conductivity decreases with
temperature (x < 0), the result is a decrease in the
mean temperature. This is a consequence of the
nonlinearity due to temperature dependent thermal
conductivity and is absent for constant thermal con-
ductivity fin, where the mean values are not affected by
base temperature oscillation [3]. However, in all cases
considered herein, 8, was an order of magnitude less
than 8, and therefore the net change in mean tempera-
ture is rather small.

It is interesting to point out that for constant
thermal conductivity (x =0), 8,, ¥, and” y, are
identically zero. In this case, the second and all the
subsequent order terms of the perturbation series
vanish and the two-term perturbation solution repro-
duces the exact solution of Yang [3]. The present
numerical solutions for ¢, and ¢, agreed very well
with the corresponding values derived from Yang’s
exact solution [3].

Another noteworthy feature of equation (32) is the
presence of a second-order oscillatory component with
twice the frequency of base temperature oscillation. As
noted earlier, this also arises as a result of the
nonlinearity due to temperature dependent thermal
conductivity and does not exist for the constant
thermal conductivity case.

To illustrate the effect of variable thermal con-
ductivity, a typical set of temperature distribution is
shown in Fig. 1. The dataarefor N =1,B =1, =0.1
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FiG. 1. Effect of o on temperature distribution; N = I, B =1, ¢ = 0.1, f(X) = exp(X).

and exponential variation of heat transfer coefficient.
Compared t0 « =0, the temperature at any axial
location is higher for o > 0 and lower for & < 0. Also
noted is the fact that the amplitude of oscillation
decreases and the phase angle increases as one goes
along the fin. Comparison with the corresponding
results for constant heat transfer coefficient shows that
the temperature throughout the fin is lower for
exponential variation. The phase angle is also com-
paratively smaller.

Heat transfer rate

Evaluating the temperature gradient from equation
(32) the instantaneous heat transfer rate ¢ can be
derived as

— 0 = (1 + @)85{0) + £2(1 + 2)3,(0)
+ e{al(0) cos Br + (1 + x)[¢;(0)
x cos Bt — ¢3(0) sin Br]}
+ e2{(1 + [ (0) cos 2Bt — 4(0) sin 2Bt]
+ «cos Bt[ ¢ (0)cos Bt — ¢4(0)sin Br]}

+0(). ... (33)

The presence of the term (1 + a)8,,(0) causes a net

change in the mean heat transfer, which in the absence
of oscillation is {1 + «)85(0). Numerical computations
showed that 8, (0} is always positive for a« > 0, and
negative for o < 0. Since 6,(0) is always negative, it
implies that the mean heat transfer rate is decreased
when the thermal conductivity increases with tempera-
ture (x > 0), and increased when the thermal con-
ductivity decreases with temperature (@ < 0). When a
= 0 (constant thermal conductivity) 8,, is identically
zero and therefore the mean heat transfer rate is not
affected by the base temperature oscillation. Also, the
higher frequency term present for a # 0 disappears for
the linear case of a = 0.

It is significant to note that the term £%(1 + ) #,,(0)
can have substantial effect, particularly with the com-
bination of low N and high B. For example, with N
= (.5, B = 10 and ¢ = 0.2, the net change in the mean
heat transfer rate is about 7.5% compared to no
oscitlation value.

Representative plots of instantaneous heat transfer
rate are shown in Figs. 2 and 3. Figure 2 illustrates the
effects of variable thermal conductivity at B = 1 and B
= 10, with N = 0.5,¢ = 0.2and f(X) = 1. Asexpected,
the average heat transfer rate, compared to the case of
a = 0,is generally higher for « > 0 and lower for o < 0.
At B = 1, the amplitude of oscillation is small but
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Fi16. 4. Time-average fin efficiency effectsof B.aand e;N = 1, f(X) =1

increases quite rapidly as B is increased to 10. It is
noted that the heat transfer rate always leads the base
temperature. Itis also interesting to note thatat B = 1,
the heat transfer rate is positive throughout the cycle
but at B = 10 negative values occur for part of the
cycle, indicating a reversal of heat flow. This reversed
or back heat flow is more pronounced for « > 0. The
fact that heat actually flows into the fin base for part of
the cycle indicates a reduction in the overall heat
rejection by the fin,

Figure 3 is the counterpart of Fig. 2 for the
exponential variation of heat transfer coefficient, that
is f(X) = exp(X). The characteristic features are the
same except that the heat transfer rate is now higher
and the reverse heat flow is reduced.

Fin efficiency

Instead of instantaneous fin efficiency, we study the
effect of temperature oscillation on time-average fin
efficiency, which is a more meaningful quantity. Over a
cycle, the average fin efficiency 77 can be evaluated from
@ as follows:

SRR N L v
T 3aN74 | o (1 + rcos Br)

where

A= j‘ f(X)ax. {35)
0

The effect of parameters a and ¢ on # are shown in Fig.
4for N = 1 and in Fig. 5 for N = 0.5. At low values of
B, 7 is very close to the usual steady-state value
without oscillation. However, as B increases, # dimin-
ishes quite rapidly particularly for higher values of «.
Indeed, at B = 10, the reduction is substantial. It is
interesting to note in Fig. 5 that the curves for different
o overlap at some intermediate value of B. Also, the
reduction in # is more drastic at N = 0.5 (Fig. 5) than
for N =1 (Fig. 4).

Finally, we give Fig. 6 which is a counterpart of Fig.
5 for the case of f (X)) = exp(X). Comparing Fig. 6 with
Fig. 5 shows that with f(X) = exp(X) the reduction in
17 is less drastic than for f(X) == 1. This again seems
reasonable because the average heat transfer coef-
ficient is now higher, and the effect of oscillation on 7
should be smaller as predicted by the exact solution
with higher heat transfer coefficient [3].

It may seem questionable to use the perturbation
solution up to ¢ = 0.3 as done in Figs. 4-6. However,
the fact that for a = 0, the two-term perturbation
solution reproduces the exact solution would seem to
indicate that the accuracy holds up even beyond ¢
=0.3.

CONCLUDING REMARKS

The present analysis is based on three assumptions
namely: (a) one-dimensional conduction; (b} no tip
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heat loss; and (c) no surface radiation. Regarding
assumption (a), the use of fins is economically justifi-
able only if the Biot numbers Bi (= hb/k) is less than
0.1. This being so, the two-dimensional steady-state
analysis of Wan and Tan [6] shows that the error in
heat transfer rate with one-dimensional assumption is
very small indeed. The other two assumptions can be
relaxed without altering the analysis in substance.
However, two additional parameters, one for tip heat
loss and the other for surface radiation, would appear
and make compact display of the results even more
difficult.

The extension of the analysis to other fin geometries
can be made in a straightforward manner.
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TRANSFERT THERMIQUE PERIODIQUE DANS DES AILETTES AVEC DES PARAMETRES
VARIABLES

Résumé — On ¢tudie a partir d’'une analyse de perturbation, le transfert thermique périodique dans une
ailette avec une conductivité thermique dépendent de la température et un coefficient de transfert thermique
dela coordonnée. Le probléme d’ordre zéro qui correspond au comportement stationnaire est résolu par une
quasi-linéarisation. Une méthode de combinaison complexe est utilisée en liaison avec un schéma numérique
et non-itératif, pour résoudre les problémes du premier et du second ordre. La nature non-linéaire du
probléme donne lieu a une composante non-oscillante dans le terme de second ordre qui cause un
changement dans les valeurs moyennes de température et de flux thermique. Le sens de ce changement
dépend du paramétre « de conductivité thermique. Sia > 0, la température moyenne est accrue tandis que le
flux moyen de chaleur est diminugé. Pour o < 0, I'effet est opposé. Des résultats détaillés sont présentés et
discutés pour les effets des différents paramétres sur la distribution de la température, le flux moyen de chaleur
et I'efficacité moyenne de I’ailette.

PERIODISCHE WARMEUBERTRAGUNG AN RIPPEN MIT VERANDERLICHEN
THERMISCHEN PARAMETERN

Zusammenfassung—Die periodische Warmeiibertragung durch eine Rippe mit temperaturbhingiger
Wirmeleitfihigkeit und ortsbhingigen Wirmeiibergangskoeffizienten wird mit Hilfe eines Storungsan-
satzes untersucht. Das Problem nullter Ordnung, das dem Verhalten der Rippe im stationdren Zustand
entspricht, wird durch Quasilinearisation geldst. Eine Methode komplexer Kombination wird in Verbin-
dung mit einem nichtiterativen numerischen Verfahren zur Lésung der Probleme erster und zweiter
Ordnung benutzt. Die Nichtlinearitit des Problems fiihrt zu einer nichtoszillierenden Komponente im Glied
zweiter Ordnung, die eine effektive Anderung der Mittelwerte von Temperatur und Wirmestrom zur Folge
hat. Die Richtung der Anderung hiingt vom dem Parameter o der Wirmeleitfihgkeit ab. Fiir «>0
vermindert sich die mittlere Temperatur. Fiir o <0 ist der EinfluB umgekehrt. Ausfiihrliche Ergebnisse, die
die Einfliisse verschiedener Parameter auf die Temperaturverteilung die iibertragene Wirme und den zeitlich
gemittelten Rippenwirkungsgrad zeigen, werden mitgeteilt und besprochen.

NEPUOJUYECKHUN PEXXWUM TEMNJOOBMEHA PEBEP C MEPEMEHHBLIMHA
TETUJIOBBIMU [TAPAMETPAMHU

Annoraums — Ha OCHOBE TEOPHH BO3MYLICHHIT aHAIM3HPYETCA MEPUOLHYECKHH PEXUM KOHBEKTHBHOTO
Teroobmena pebpa, TENIONPOBOAHOCTL KOTOPOTO 3ABHCHT OT TEMNEPATYpPbl, a KOIDGUUMEHT Teno-
OTJa%¥ — OT KOOpAMHATHL. B HynesoM fnopsajke. COOTBETCTBYIOUIEM CTALUOHAPHOMY COCTOSHHIO
pebpa, 3anaya peluaeTcs METOAOM KBA3HIMHEADHM3alUMH. [Ins pelUeHHs 3a[a4 NEPBOTO M BTOPOro
TIOPAAKOB HCMOJIL3YETCA METOL KOMNJIEKCHON kOMOHMHAIIMM COBMECTHO C HEHTEPAMOHHOMN YMCICHHOM
CXeMOH. B CBA3M ¢ HenMHEHHBIM XapaKTEPOM 3ajd4M B C/IATaEMOM BTOPOTO MOPAJKA NOSBIAETCS
HEOCUMIIIMPYIOLIAs KOMMOHEHTA, 4TO MPUBOAWT K H3IMEHCHHIO CPEHHX 3HAYeHMH TemIepaTypbl M
MHTEHCHBHOCTH repeHoca Tenia. Hanpassjenne M3IMEHEHHs 3aBHCHT OT NapameTpa TemIONpPOBO.-
HOCTH «. [1pH x > 0 cpeanee 3HaMeHHE TEMNEPATYPH! BO3PACTAET, a CpelHee 3HAYEHME UHTEHCHBHOCTH
nepeHoca Tenja ymesbuwiaetca. [lpu « < 0 wabmiogaerca nporuBononoxHslit Iddext. [Moayvens
noApoOHble AaHHBIE, XapaKTEPUIYIOIUME BIHSHHE PA3/IMYHBIX NAapAMETPOB HA PACpeIe/IeHue TeMIle-
paTypbl, HHTEHCHBHOCTE TEMJAOOTAAYH M CPEAHIONO 110 BpeMeHH 3¢hdeKTUBHOCTSL pebpa.



