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Abstract - Periodic heat transfer in a convecting fin with temperature dependent thermal conductivity and 
coordinate dependent heat transfer coefficient, is analyzed using a perturbation analysis. The zero-order 
problem, which corresponds to steady-state fin behaviour, is solved by quasilinearization. A method of 
complex combination is used, in conjunction with a noniterative numerical scheme, to solve the first-order 
and the second-order problems. The nonlinear nature of the problem gives rise to a nonoscillatory 
component in the second-order term, which causes a net change in the mean values of temperature and heat 
transfer rate. The direction of change depends on the thermal conductivity parameter a. For a > 0, the mean 
temperature is increased, while the mean heat transfer rate is decreased. For a < 0, the effect is opposite. 
Detailed results showing the effects of various parameters on temperature distribution, heat transfer rate and 

time-averaging fin efficiency are presented and discussed. 

NOMENCLATURE 

constant defined by equation (35); 
fin thickness ; 
dimensionless frequency, pcwL’/k,; 

specific heat ; 
function of X defining coordinate depen- 
dence of h ; 
heat transfer coefficient ; 
heat transfer coefficient at the fin base; 
thermal conductivity; 
thermal conductivity at environment 
temperature; 
fin length ; 
fin parameter, J(2h,/k,b)L; 

heat transfer rate; 
dimensionless heat transfer rate, 

@%b(T,, - T,); 
time; 
temperature ; 
fin base temperature; 
environment temperature; 
mean fin base temperature; 
axial distance ; 
dimensionless axial distance, x/L. 

Greek symbols 

ONE AREA of current interest in fin studies is the 
prediction of fin performance under periodic thermal 
conditions. Such conditions are often encountered in 
applications such as solar collectors, electronic com- 
ponents, internal combustion engines, cutting tools 
etc. A recent paper of ours [1], and the references cited 
therein, give a fairly complete view of the work done so 
far. As such, no further review of the literature is 
attempted here. 

dimensionless amplitude of base tempera- The existing studies consider convecting, radiating 
ture, equation (1); and convecting-radiating fins with periodic variations 
thermal conductivity parameter, B of either base temperature or environment tempera- 

(T,, - To); ture or base heat flux or fluid temperature at the 
slope of dimensionless thermal convectively cooled fin base. However, none of them 
conductivity-temperature line; takes into account the effect of variable thermal 
density; parameters which is always present in realistic situ- 
time-average fin efficiency over a cycle; ations. For example, in a convecting fin, the con- 

dimensionless temperature, 

(T- T,)/(T,, - 7-a); 
zero-order approximation ; 
first-order approximation; 
second-order approximation ; 
nonoscillatory component of O2 ; 
complex function of X ; 
real part of fj ; 
imaginary part of C#J ; 
complex function of X ; 
real part of 1(1; 
imaginary part of Ic/ ; 
dimensionless time, k, t/pcL2 ; 
frequency of base temperature oscillation, 

INTRODUCTION 
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vective heat transfer coefficient varies considerably 
from the base to the tip [2]. Similarly, if large 
temperature differences exist, the dependence of fin 

thermal conductivity on temperature can be signi- 
ficant. It would seem that the study of periodic heat 
transfer in fins with variable thermal parameters is in 
order. The present paper covers this area. 

To explore the effects of variable thermal para- 
meters, we will consider a convecting fin (the effect of 
radiation, if any, is ignored) of uniform thickness with 

coordinate dependent heat transfer coefficient and 
temperature dependent thermal conductivity. The 

base temperature will be assumed to oscillate around a 
mean value. The heat transfer coefficient is allowed to 
vary along the fin length in an arbitrary manner. Its 
exact specification depends on the cooling process and 
the available experimental information. However, the 
thermal conductivity is assumed to have linear de- 
pendence on temperature. Such variations have been 
used for many years in steady tin problems, the most 
recent example being presented by Razelos and Imre 

PI. 
A three-term perturbation analysis will be carried 

out in terms of the parameter I:, which represents the 
dimensionless amplitude of the base temperature 

oscillation. The zero-order problem, which is non- 
linear as a result of temperature dependent thermal 
conductivity, corresponds to the steady-state be- 
haviour. The first and the second order problems 

constitute two linear partial differential equations. 
With the use of method of complex combination, each 
is reduced to two, coupled linear boundary value 
problems which are finally integrated numerically by a 
noniterative procedure. The analysis highlights some 
interesting features associated with the nonlinear 
nature of the problem which otherwise remain obscure 
if a fully numerical approach is adopted. A second 

advantage of the procedure is that the computation is 
indeed very fast. A CPU time of 20s was needed on 
Amdahl 470 V/7 system to compute all the data, only 

part of which appear in the present paper. Despite the 

retention of only three terms of the perturbation 
expansion, the solution is accurate up to :: = 0.4, a limit 
that is not likely to exceed in practice. 

AI\IALYSIS 

Formulution 
For simplicity, we consider a straight fin of uniform 

thickness b and length I_. and assume the base tempera- 
ture Tb to oscillate around a mean value Tbm with 
frequency w according to 

Tb - Tbm = (Tbm - T,)i:COSWt i: < 1. (1) 

The fin tip is taken to be adiabatic. On both lateral 
faces, the fin loses heat to an environment at tempera- 
ture T, with heat transfer coefficient h, which is taken 
as a function of axial distance x. The thermal con- 
ductivity k of the fin is assumed to vary linearly with 
temperature in accordance with usual practice, that is 

k = k,[l + /I(T- T,)]. (2) 

Based on one-dimensional conduction, the fin equa- 

tions in dimensionless form appear as 

&[(l+@B);]-NzrJX)B=; (3) 

^ 
x = 0, 0 = 1 + r:cos/It; x = 1, ; = 0 (4) 

where the symbols are as defined in the Nomenclature. 

Perturbation solution 
Since I: would in general remain below unity, we 

assume a regular perturbation expansion for B in 
powers of c as 

@(X,t) = e,(X) + FeI(X,r) + E20,(x,T) + “.. (5) 

Substituting (5) into equations (3) and (4) and equating 
the coefficients of like powers of c: on both sides of 
equations (3) and (4), one gets the following: 

i:‘: (1 + CZ@,)~; + ~~02 - N’f(X)t?, = 0 (6) 

x = 0, 0, = 1; x = 1, 0; = 0 (7) 

2: & 
’ 1 

(1 + aB,)Z + cc&H, 
1 

^ 
- N’f(X)e, = $ (8) 

x=0, 8,=COSfiT; x=1, g=o (9) 

x = 0, 0, = 0; x = 1,g = 0 (11) 

where the primes in equations (6)-(10) and all sub- 
sequent equations to follow, denote total differen- 
tiation with respect to X. Higher-order terms can be 
written similarly ; however, the three-term expansion 
would be found sufficiently accurate up to I: = 0.4. This 
limit is not likely to exceed in practical situations. In 
fact, in previous studies [3. 41, the maximum value 
assigned to B was 0.2. 

The zero-order problem, described by equations (6) 
and (7) corresponds to the steady-state behaviour. 
Since no analytical solution is available, we shall solve 
it using quasilinearization in conjunction with the 
method of superposition [S]. 

To solve equations (8) and (9) we use the method of 
complex combination and assume a solution of the 
form 

et(X,r) = R[4(X)exp(iBr)l (12) 

where the operator R represents the real part of the 
quantity in square brackets. With the use of (12) in 
equations (8) and (9) the governing equation for 4 
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becomes we obtain equations for $I and Ic/2 as follows: 

(1 f cl&)@ + zffe$& + [I%@; - NZf(X) - S-j f#J = 0 

(13) 

(1 + ae,)$; + 2agb$; + a~; 

x=0, #=l; x=1, #),‘=o. (14) 

By splitting 4 into real and imaginary parts i.e. 

9 = #1 + $2 (15) 

equations for cbi and +2 now constitute two, coupled 
linear boundary value problems as follows: 

(1 + ~~~)~~ + 2a%& 

+ [a& - N2f(X)]& + Bi#Q = 0 (16) 

(1 + a@,)& + 2aS0& 

+ [a@& - N2f(X)]& - B4, = 0 (17) 

x=0,41=1, &=O; x=1, &=&=O. 

(18) 

+ [a@;; - iV2f(X)]Jli + 2B$z = 0 (29) 

(1 + a&Jl(/i + 2a&t& + az; 

+ [a& - N’f(X)]+, - 2B$, = 0 (30) 

x = 0, $1 = $2 = 0; x = 1, l+k; = I& = 0. (31) 

As before, equations (22) and (23) and (29)-(31) are 
solved noniteratively with the aid of method of super- 
position. It should be emphasized that except for the 
solution of B,, all other solutions are carried out 
noniteratively. 

RESULTS AND DISCUSSION 

Temperature distribution 
The temperature distribution in terms of quantities 

determined numerically can be written as 

Being linear, equations (16)-(18) can be solved non- 
iteratively by the method of superposition as detailed 
in [5]. 

B = B0 + c2e2, + ~(4~ cosB7 - (b2 sin B7) 

Coming to the solution of equations (10) and (1 l), it 
is noted that one of the terms has ~~(~e~/~X) as- 
sociated with it. Using equation (12) it can be shown, 
after some manipulation, that 

@I 2 = )(tbl& + +26;) + R[(z, + iz2)e’2B’] 

(19) 

where 

= $(#l& - 42449 

I: = tc414; + 424;). 
(33 

Equation (19) suggests that the solution for tY2 must be 
written as the sum of a nonos~llatory component BrJ 
and an oscillatory component, in the form 

e2 = $2S + R[+(X)ei2”] (21) 

Using equation (21) in equations (10) and (11) leads to 
the following system of equations for 62S and $ 

(1 + a0,)0;, + 2aBbf?;, + aB;;Bzs 

+ lia(#rtb’; + bt;2 + 429’; + 443 - ~2f(x)@2, 

= 0 (22) 

x = 0, e2s = 0; x = 1, e;, = 0 (23) 

(1 + ae~)~” + 2a&@’ + a(z; + iz;) 

+ [a& - N2f(X) - i2B]J/ = 0 (24) 

x=0, rr/=o; X=l,$‘=O (25) 

where 

+ t?(tjl cos ~BT - ti2 sin 2B7) + 0(c3). (32) 

Equation (32) shows that the nonoscillatory com- 
ponent B,, associated with the second-order term, 
causes a net change in the mean temperature, which in 
the absence of oscillation is simply Bo. For all para- 
metric values of N and B used here, @2S at all axial 
locations was always positive for a > 0, and negative 
for a < 0. This shows that if the thermal conductivity 
of the fin material increases with temperature (a > 0), 
it causes the mean temperature to increase. On the 
other hand, if the thermal conductivity decreases with 
temperature (a < 0), the result is a decrease in the 
mean temperature. This is a consequence of the 
nonlinearity due to temperature dependent thermal 
conductivity and is absent for constant thermal con- 
ductivity fin, where the mean values are not affected by 
base temperature oscillation [3]. However, in all cases 
considered herein, Q2S was an order of magnitude less 
than & and therefore the net change in mean tempera- 
ture is rather small. 

It is interesting to point out that for constant 
thermal conductivity (a = 0), 0,,, $, anb ti2 are 
identically zero. In this case, the second and all the 
subsequent order terms of the perturbation series 
vanish and the two-term perturbation solution repro- 
duces the exact solution of Yang [3]. The present 
numerical solutions for #1 and & agreed very well 
with the corresponding values derived from Yang’s 
exact solution [3]. 

z; = f(#lK + 4: - 424’; - #a (26) 

4 = Ml& + 2445 + 424;). (27) 

Once again splitting $ into real and imaginary parts 
i.e. 

ti = ILt + W2 (28) 

Another noteworthy feature of equation (32) is the 
presence of a second-order oscillatory component with 
twice the frequency of base temperature oscillation. As 
noted earlier, this also arises as a result of the 
nonlinearity due to temperature dependent thermal 
conductivity and does not exist for the constant 
thermal conductivity case. 

To illustrate the effect of variable thermal con- 
ductivity, a typical set of temperature distribution is 
showninFig.l.ThedataareforN=l,B=l,~=O.l 
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e 

FIG 1. Effect of a on temperature distribution; N = I,5 = 1, R = 0.1, f(X) = exp(X). 

and exponential variation of heat transfer coefficient. 
Compared to a = 0, the temperature at any axial 
location is higher for a > 0 and lower for a < 0. Also 
noted is the fact that the amplitude of oscillation 
decreases and the phase angle increases as one goes 
along the fin. Comparison with the corresponding 
results for constant heat transfer coefficient shows that 
the temperature throughout the fin is lower for 
exponential variation. The phase angle is also com- 
paratively smaller. 

Heat transfer rate 
Evaluating the temperature gradient from equation 

(32) the instantaneous heat transfer rate Q can be 
derived as 

- Q = (I + a)~~(O) + r:‘(l + a)@&(O) 

+ c{a&(O)cosBz f (1 + a)[#\(O) 

x cos BT - &(O) sin Bz]} 

+ ?{(l + a)[$;(O)cosZBz - &(O)sin2B~] 

+ a cos Br[~$;(O)cos Bz - &(O) sin Bz]) 

+ O(E?).... (33) 

The presence of the term z2( 1 + a)@&(O) causes a net 

change in the mean heat transfer, which in the absence 
of oscillation is (1 + a)~~(O). Numerical compu~tions 
showed that @s,(O) is always positive for E > 0, and 
negative for a < 0. Since So(O) is always negative, it 
implies that the mean heat transfer rate is decreased 
when the thermal conductivity increases with tempera- 
ture (a > 0), and increased when the thermal con- 
ductivity decreases with temperature (a < 0). When a 
= 0 (constant thermal conductivity) eza is identically 
zero and therefore the mean heat transfer rate is not 
affected by the base temperature oscillation. Also, the 
higher frequency term present for a # 0 disappears for 
the linear case of a = 0. 

It is significant to note that the term ~~(1 + a) B’,,(O) 
can have substantial effect, particularly with the com- 
bination of low N and high B. For example, with N 
= 0.5, B = 10 and F = 0.2, the net change in the mean 
heat transfer rate is about 7.5% compared to no 
oscillation value. 

Representative plots of instantaneous heat transfer 
rate are shown in Figs. 2 and 3. Figure 2 illustrates the 
effects of variable thermal conductivity at B = 1 and B 
= 10, with N = 0.5, E = 0.2 andj(X) = 1. As expected, 
the average heat transfer rate, compared to the case of 
a = 0, is generally higher for a > 0 and lower for a < 0. 
At B = 1, the amplitude of oscillation is small but 
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FIG. 2. Effect of parameters DC and B on instantaneous beat transfer rate; N = 0.5. i: = 0.2, j(X) = 1. 
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FIG. 3. Effect of parameters x and B on instantaneous heat‘transfer rate; N = 0.5, c = 0.2, j(X) = exp(X) 
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FIG. 4. Time-average fin efficiency : effects of B. a and E ; N = 1, f(X) = 1 

increases quite rapidly as B is increased to 10. It is 
noted that the heat transfer rate always leads the base 
temperature. It is also interesting to note that at B = 1, 
the heat transfer rate is positive throughout the cycle 
but at B = 10 negative values occur for part of the 
cycle, indicating a reversal of heat flow. This reversed 
or back heat flow is more pronounced for a > 0. The 
fact that heat actually flows into the fin base for part of 
the cycle indicates a reduction in the overall heat 
rejection by the fin. 

Figure 3 is the counterpart of Fig. 2 for the 
exponential variation of heat transfer coefficient, that 
is f(X) = exp(X). The characteristic features are the 
same except that the heat transfer rate is now higher 
and the reverse heat flow is reduced. 

Fin efficiency 
Instead of instantaneous fin emciency, we study the 

effect of temperature oscillation on time-average fin 
efficiency, which is a more meaningful quantity. Over a 
cycle, the average fin efficiency d can be evaluated from 
Q as follows : 

1 -p 
' - 2nN2A s 

2x Q 
~- d(Bz) (341 

fj (1 + ecosB7) 

The effect of parameters a and I: on q are shown in Fig. 
4forN 2 1 and in Fig. 5 for N = 0.5. At low values of 
B, tj is very close to the usual steady-state value 
without oscillation. However, as B increases, d dimin- 
ishes quite rapidly particuIarly for higher values of 6:. 
Indeed, at B = 10, the reduction is substantial. It is 
interesting to note in Fig. 5 that the curves for different 
a overlap at some intermediate value of B. Also, the 
reduction in rj is more drastic at N = 0.5 (Fig. 5) than 
for N = 1 (Fig. 4). 

Finally, we give Fig. 6 which is a counterpart of Fig. 
5 for the case off(X) = exp(X). Comparing Fig. 6 with 
Fig. 5 shows that withf(X) = exp(X) the reduction in 
q is less drastic than forf(X) = 1. This again seems 
reasonable because the average heat transfer coef- 
ficient is now higher, and the effect of oscillation on q 
should be smaller as predicted by the exact solution 
with higher heat transfer coefficient [3]. 

It may seem questionable to use the perturbation 
solution up to c: = 0.3 as done in Figs. 4-6. However, 
the fact that for a = 0, the two-term perturbation 
solution reproduces the exact solution would seem to 
indicate that the accuracy holds up even beyond I: 
= 0.3. 

where CONCLUDING REMARKS 

The present analysis is based on three assumptions 
A = ‘f(X)dX. (35) namely: (a) one-dimensional conduction ; (b) no tip 

0 
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FIG. 5. Time-average fin efficiency: effects of B, a and c; N = 0.5, f(X) = 1 
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FIG. 6. Time-average fin efficiency: effect of B, CI and E; N = 0.5, f(X) = exp(X). 
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heat loss ; and (c) no surface radiation. Regarding 
assumption (a), the use of fins is economically justifi- 
able only if the Biot numbers Bi (= hb/k) is less than 
0.1. This being so, the two-dimensional steady-state 
analysis of Wan and Tan [6] shows that the error in 
heat transfer rate with one-dimensional assumption is 
very small indeed. The other two assumptions can be 
relaxed without altering the analysis in substance. 
However, two additional parameters, one for tip heat 
loss and the other for surface radiation, would appear 
and make compact display of the results even more 
difficult. 

The extension of the analysis to other fin geometries 
can be made in a straightforward manner. 
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TRANSFERT THERMIQUE PERIODIQUE DANS DES AILETTES AVEC DES PARAMETRFS 
VARIABLES 

Resume - On etudie B partir d’une analyse de perturbation, le transfert thermique periodique dans une 
ailette avec une conductiviti thermique dependent de la temperature et un coefficient de transfert thermique 
de la coordonnee. Le probleme d’ordre zero qui correspond au comportement stationnaire est rtsolu par une 
quasi-linearisation. Une mtthode de combinaison complexe est utilisie en liaison avec un schema numirique 
et non-itiratif, pour resoudre les problemes du premier et du second ordre. La nature non-lineaire du 
probleme donne lieu a une composante non-oscillante dans le terme de second ordre qui cause un 
changement dans les valeurs moyennes de temperature et de flux thermique. Le sens de ce changement 
depend du paramitre a de conductivite thermique. Si a: > 0, la temperature moyenne est accrue tandis que le 
flux moyen de chaleur est diminui. Pour a < 0, l’effet est oppose. Des resultats ditaillls sont presentis et 
discutts pour les effets des differents parametres sur la distribution de la temperature, le flux moyen de chaleur 

et I’efficacite moyenne de I’ailette. 

PERIODISCHE WARMEUBERTRAGUNG AN RIPPEN MIT VERANDERLICHEN 
THERMISCHEN PARAMETERN 

Zusammeafassung-Die period&he Wlrmeiibertragung durch eine Rippe mit temperaturbhangiger 
Wtimeleitfahigkeit und ortsbhlngigen Wiirmeifbergangskoefzienten wird mit Hilfe eines Storungsan- 
satzes untersucht. Das Problem nullter Qrdnung das dem Verhalten der Rippe im stationiiren Zustand 
entspricht, wird durch Quasilinearisation gel&t. Eine Methode komplexer Kombination wird in Verbin- 
dung mit einem nichtiterativen numerischen Verfahren zur Losung der Probleme erster und zweiter 
Ordnung benutzt. Die Nichtlinearitlt des Problems fiihrt zu einer nichtoszillierenden Komponente im Glied 
zweiter Ordnung, die eine.effektive Anderung der Mittelwerte von Temperatur und Warmestrom zur Folge 
hat. Die Richtung der Anderung hlngt vom dem Parameter a der Wlrmeleitfahgkeit ab. Fur c1>0 
vermindert sich die mittlere Temperatur. Fiir a <O ist der EinfluB umgekehrt. Ausftihrliche Ergebnisse, die 
die Einfltisse verschiedener Parameter auf die Temperaturverteilung die tihertragene Warme und den zeitlich 

gemittelten Rippenwirkungsgrad zeigen, werden mitgeteilt und besprochen. 

IIEPMO~M~ECKMH PE-WCMM TEIlJIOO6MEHA PEEEP C IlEPEMEHHbIMM 
TEIIJIOBbIMM HAPAMETPAMM 

AHHoTauna - Ha OCHOBe TeOpHH BOJMymeHHH aHaJlH3HpyeTCa nepHOaHHeCKHH peXHM KOHBeKTHBHOrO 
rennoo6Meea pe6pa, TenJlOnpOBOnHOCTb KOTOpOrO 3aBHCHT OT TeMnepaTypbI, a K03+(t)HnHeHT TenJtO- 
OTaaHH - OT KOOpaHHaTbI. B HyneBOM TIOpsaKe. COOTBeTCTBymmeM CTaUHOHapHOMy COCTOaHHm 
pe6pa, 3anaqa pemaeTcn MeTORoM KBa3HnHHeapH3auHH. &rB pemeeea 3aaar nepeoro H BTOPO~O 
nOpBaKOB HCnOJTb3yeTCB MeTOn KOMnneKCHOH KOM6HHaUHH COBMeCTHO C HeHTepanHOHHOti WCJ,eHHOti 

cxebiok B CB113H C HeJIHHeitHbIM X+iKTepOM sanarli B CnaraeMoM BToporo nopnaKa noxBnBeTcs 
HeOCtIHJlBHpytOmaB KOMnOHeHTa, YTO np&iBOLlbiT K W3MeHeHAK) CFRHHX 3HaWZHHfi TeMnepaTypbI H 
HHTeHcHBHocTH nepeHoca Tenna. HanpaBneHHe H3MeHeHHB 3aBHcHT OT napaMeTpa TennonpoBon- 
HOCTH 1. IIpH z > 0 cpenHee 3HaHeHHe TeMnepaTypbr Bo3pacTaeT. a cpenHee 3HaHeHHe HHTeHcHBHocTH 
nepeHoca Tenna yMeHbmaeTca. np 3 < 0 ua6nronaercn npOTHBOnOBOXHbIfi 3lptjieKT. nOJIyHeHbr 
nonpo6Hbre naHHbIe, xapaKTepH3yromHe BnHHHHe pasnessbrx napaMeTpoB Ha pacnpeneneHHe TeMne- 

paTypb1, HHTeHCHBHOCTb TennOOTaaHH H CpenHmiO HO BpeMeHH +$eKTHBHOCTb pe6pa. 


